The solid Earth's medium is heterogeneous over a wide range of scales. Seismological observations, including envelope broadening with increasing distance from an earthquake source and the excitation of long-lasting coda waves, provide a means of investigating velocity inhomogeneities in the lithosphere. These phenomena have been studied primarily using radiative transfer theory with random medium modelling. This book presents the mathematical foundations of scalar- and vector-wave scattering in random media, using the Born or Eikonal approximation, which are useful for understanding random inhomogeneity spectra and the scattering characteristics of the solid Earth. A step-by-step Monte Carlo simulation procedure is presented for synthesizing the propagation of energy density for impulsive radiation from a source in random media. Simulation results are then verified by comparison with analytical solutions and finite-difference simulations. Presenting the latest seismological observations and analysis techniques, this is a useful reference for graduate students and researchers in geophysics and physics.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.